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Abstract—Simultaneous Localization And Mapping (SLAM) 

allows a mobile robot to be completely autonomous in an 

unknown environment and perform its tasks. The robot is able to 

create a map of its environment and at the same time locate itself. 

Real world environments however, are characterized by moving 

objects such as people, cars, robots and mobile furniture.  

In order for the robot to interact safely with these moving objects 

the robot would have to perform Detection And Tracking Of 

Moving Objects (DATMO). Moving object detection and 

tracking would eliminate errors in maps, resulting in a reliable 

map that would enable the robot to localize itself in the 

environment and execute its tasks. This paper provides a 

literature review of the techniques and sensors employed to allow 

a mobile robot to perform SLAM and DATMO.   

 

Keywords-SLAM; DATMO; dynamic; detecting and tracking; 

Kinect 

I.  INTRODUCTION 

The SLAM problem has been researched extensively in 

static environments. Applications have evolved from different 

environments such as indoor to outdoor, aerial, underwater 

and mining. Most of these applications are undertaken in static 

environments that do not account for dynamic objects.  

 

Dynamic objects fall into two different categories, those 

that are always moving and those that are temporarily static 

and change their position over time.  

 

Temporarily stationary objects can be incorrectly accounted 

for as static and lead to data association errors that reduce map 

accuracy. SLAM In Dynamic Environments (SLAMIDE), has 

been researched recently, but open questions still exist. These 

questions are: 

 

 How to distinguish between static and dynamic objects, 

 How to represent static and dynamic objects, and 

 How to track dynamic objects and predict their position 

over time. [7, 13, 14, 17] 

 

The paper is organized as follows: Section II introduces 

SLAM and DATMO, lists tracking and data association 

methods for DATMO, and explains the popular occupancy 

grip-based SLAM technique, and a free space strategy to 

identify moving objects. Section III consists of the literature 

review. Section IV compares the different techniques. Section 

V concludes the paper, and Section VI describes the intended 

application.  

II. SLAM AND DATMO 

A. SLAM and DATMO processes 

SLAM and DATMO provide a basis for the development 

of driverless cars such as those involved in the DARPA 

challenge [21, 22]. Autonomous cars can assist the physically 

disabled, reduce mundane and long transportation trips, and 

also prevent accidents that occur due to human errors such as 

speeding or distraction. [15]   

 

SLAM and DATMO involve: 

 

 Localization of the robot, 

 Mapping of the environment, 

 Detection of moving objects and 

 Tracking of moving objects. 

 

SLAM assumes the robot environment as static, i.e. 

having only non-moving objects. [14] Dynamic objects are 

regarded as noise sources. In some scenarios, this hypothesis 

is acceptable, but in most real world environments where 

dynamic objects cannot be avoided, these approaches succumb 

to errors reducing the overall map quality.  

 

SLAM can be referred to as a process concerned with the 

state of the robot in a static environment. As illustrated in 

Figure 1.a the inputs are observations from exteroceptive 

sensors (e.g. laser scanners and cameras) and proprioceptive 

sensors (e.g. odometry and IMU). The outputs of SLAM are 

the location of the robot and a map of the static objects.  

 

DATMO can be referred to as a process concerned with 

the states of objects that the robot can ‘see’ or perceives in a 

dynamic environment.  If an accurate pose estimate is 

available, the inputs of DATMO are observations from 

exteroceptive sensors. The outputs are positions of dynamic 

objects and their respective trajectories (refer to Figure 1.b). 

Unlike SLAM, DATMO does not have proprioceptive data of 

the moving objects. 

 

As illustrated in Figure 1.c SLAM and DATMO 

combined, can be regarded as a process in a dynamic 

environment where the inputs are similar to the SLAM 

process, but the outputs include the results of both processes, 

i.e. the map of the environment, the robot pose, the positions  
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a) The SLAM process 

 

 
b) The DATMO process 

 

 
c) The SLAM and DATMO process 

 
Figure 1. a) The SLAM process, b) the DATMO process and c) the SLAM 

and DATMO process. Where Z represents exteroceptive measurements, U, 

motion measurements, x,the true robot state, M, static object locations, O, 
moving objects states and S, motion modes of the moving objects. Diagram 

adapted from [16]. 

 

and trajectories of dynamic objects. SLAM and DATMO 

require algorithms that reduce the computational complexity 

of both processes to produce optimal results. [14, 16, 17] 

 

Wang [15] defined requirements for the DATMO 

algorithm. The algorithm must: 

 

 Detect and initiate new dynamic objects; 

 Model dynamic object trajectories; 

 Perform data association; 

 Combine two or more dynamic objects that correlate with 

each other; 

 Omit dynamic objects that are no longer in the sensor’s 

field of view; 

 Account for objects that may be occluded; 

 Attempt to rectify incorrect measurements; 

 Operate robustly over long observation sequences. 

 

B. Filtering and data association 

After moving objects are detected they need to be tracked. 

The tracking of multiple moving objects in dynamic 

environments involves filtering and data association. Filtering 

is concerned with tracking one particular object and 

processing the data over time to compute a state estimate for 

the single object. Data association deals with tracking multiple 

objects and determines which data correlates with which 

object. Filtering methods then compute object state estimates 

with the respective data.  

 

The most popular data association techniques are the 

Global Nearest Neighborhood (GNN) combined with filtering, 

Joint Probabilistic Data Association Filter (JPDAF) and the 

Multiple Hypothesis Tracking (MHT). Tracking techniques 

frequently used include Kalman Filters (KF), Particle Filters 

(PF) and Interacting Multiple Models (IMM). [2, 12, 13] 

 

C. Grid-based SLAM 

The occupancy grid based technique is described as it is 

applied in the majority of SLAMIDE applications for map 

representation and object differentiation presented in section 

III. It is an efficient method for representing uncertainty, 

combining many sensor measurements, and explicitly 

modeling free space for navigation purposes. The latter 

characteristic makes it ideal for SLAMIDE. 

 

The occupancy grid technique was first introduced by 

Elfes [4]. It is regularly used as it is versatile in environment 

representation. It can be applied outdoors where feature 

identification and extraction are difficult to perform due to 

sensor noise. 

 

In grid-based mapping, the occupancy of each grid cell is 

estimated when new sensor measurements are obtained and 

updated by filtering methods.  

 

Bayesian filtering, through the use of Extended Kalman 

Filters (EKF), is the most common grid-based SLAM method 

applied in section III. [12, 18, 20] 

 

D. Grid based Moving Object Detection 

A motion-based method to differentiate between moving 

and stationary objects in occupancy grids is explained. The 

main concept is based on the occupation of space in a local 

grid map i.e. if the space is free (containing no objects), 

occupied (containing objects initially assumed static) and 

unknown (where it is not certain whether the objects are static 

or dynamic). 

 

The reasoning follows that if an object is observed in a 

previously defined free space, then it is considered to be a 

dynamic object. If an object is detected in a previously defined 

occupied space then it is regarded as static. If an object 

appears in a previously defined unknown space, then its 

mobility state remains undefined. 

 

In addition, any object found in a space where several 

objects are moving, should be classified as a potential moving 

object. Stationary objects are modeled in the local static grid 

map (S) and moving objects are modeled in a local dynamic 

grid map (D). Both maps have equal pose, size and resolution. 

Each cell in the dynamic map contains a value relating to the 

number of times a moving object has been detected in the cell.  
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In this way the static and dynamic parts are ascertained and 

errors that deteriorate localization and map quality are 

prevented. [12, 18, 20] 

 

III. LITERATURE REVIEW 

In the proceeding work, the following aspects have been 

discussed: The SLAM technique employed, the map 

representation, the data association and tracking methods to 

achieve SLAM and DATMO. The sensors utilized, 

environment and objects detected have also been named. 

 

Wang [16] was the first author to integrate SLAM and 

DATMO. A Bayesian formula was introduced to solve SLAM 

and DATMO.  EKFs were utilized and separate posteriors for 

the static and dynamic objects were maintained. A scan 

matching technique and the Iterative Closest Point (ICP) 

algorithm were used to represent data in grid-maps.  Data 

association was achieved with the Multiple Hypothesis 

Tracking (MHT) algorithm. Moving objects were modeled 

and tracked using the IMM algorithm. 

 

Tests were performed on the Navlab11 vehicle at high 

speeds in crowed urban environments. The Navlab11 was 

equipped with movement sensors (IMU, GPS, differential 

odometry, compass, inclinometer, and angular gyroscope) and 

perception sensors (video sensors, a light-stripe rangefinder, 

one SICK LMS221 and two SICK LMS291 laser range 

finders.  

 

The lasers were mounted in different positions on the 

Navlab11 vehicle, to perform horizontal or vertical profiling 

and produce 3D (2.5D) maps. Pedestrians, cars, bikes and 

buses were detected and tracked. [16] 

 

Hähnel, Schulz and Burgard [5] presented a probabilistic 

technique for forming maps in environments containing 

multiple persons. Sample-based JPDAFs (SJPDAFs) were 

implemented to track people from the laser range scans 

obtained. Moving people and stationary objects were 

identified in occupancy probability grids obtained from 

consecutive scans.  The robust method produced better pose 

estimates, and reduced spurious objects in maps. 

 

Several experiments were conducted on different robotic 

platforms in various environments for producing 2D and 3D 

maps. The Pioneer 2 robot was tested in an empty exhibition 

hall of the Byzantine Museum in Athens, Greece with fifteen 

people walking around.  RWI B21 robot Rhino was tested in a 

large corridor environment of the Computer Science 

Department in Bonn with five people walking around. Both 

robots had a 2D laser range finder to obtain data indoors and 

create 2D maps.  

 

The Pioneer 2 AT platform was equipped with two laser 

range finders, one to track people and the other to obtain the 

3D structure of the environment. The latter laser was 

positioned on an AMTEC wrist module. Experiments occurred 

outdoors in the university campus with several people walking 

around. [5] 

 

Montesano, Minguez and Montano [8] integrated the 

identification of moving and non-moving objects within the 

estimation process. A maximum likelihood incremental 

approach was utilized to estimate a map, robot pose and 

dynamic objects. An extended Iterative Dual Correspondance 

(IDC) algorithm jointly estimated the robot pose and 

differentiated the static and dynamic objects. The static parts 

were represented in a probabilistic grid map. Independent 

EKFs performed tracking of the dynamic objects. The data 

association was executed using the nearest neighbor rule. 

 

Tactical planning and obstacle avoidance tests were 

conducted on a robotic wheelchair with a 2D laser range 

finder and odometric sensors, in a laboratory with moving 

people and doors, to construct a 2D map. 

 

Following the work of Wang [16], Vu, Burlet, and Aycard 

[13] produced a reliable vehicle sensing system with an 

affordable 2D laser range scanner. A fast laser-based 

incremental localization method to correct robot positions 

from odometry was introduced. Laser measurements were 

integrated to construct a reliable grid map based on the 

occupancy grid framework formulated by Elfes [4]. Dynamic 

objects were detected by their inconsistencies with the existing 

grid map. Data association and tracking were achieved with  

MHT, combined with an adaptive IMM filter. Radar data was 

merged with laser data to validate the laser data results.  

 

The DaimlerChrysler demonstrator car was equipped with a 

camera, two short-range radars and a 2D laser scanner. The 

vehicle was tested on city streets, country roads and highways 

at high speeds. Pedestrians and cars were detected and tracked. 

[13] 

 

Vu [12] implemented an occupancy grid-based approach 

for SLAM with DATMO. SLAM was solved locally by 

maximum likelihood of the occupancy grid maps, and globally 

by EKF with feature-based maps, where each local grid map 

was depicted by a feature.  

 

Vehicle positions from odometry where corrected with a 

fast incremental scan matching method similar to [13].  When 

adequate vehicle position was achieved, the map was updated 

incrementally. Dynamic objects were sensed without priori 

target knowledge based on free and occupied space.  

 

The algorithm was tested on a Mercedes-Benz E-Class as 

part of the PreCrash collision avoidance safety application. 

The vehicle was equipped with Ibeo’s ALASCA laser scanner 

and two M/ACOM SRS100 24 GHz short range radars. Radar 

data was fused with laser data for more reliable results as in 

[13]. 
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Dynamic objects were detected by comparing new scan 

measurements with the existing local grid map. Greedy 

Nearest Neighbor (GNN) and KF were applied for data 

association and tracking. The vehicle detected possible 

collisions in traffic on highways, rural roads and in urban 

areas. 

 

In addition, Vu [12] introduced a technique for 

simultaneous detection, classification and tracking of dynamic 

objects. A model-based method was used to decipher 

consecutive laser scans within a sliding time window by 

dynamic object path hypotheses. The Data-Driven Markov 

Chain Monte Carlo (DDMCMC) method was applied for data 

association and tracking moving objects. The algorithm was 

simulated with Wang’s Navlab dataset [16] in urban traffic. 

Models assisted in detecting and tracking buses, cars, bikes 

and pedestrians. The DDMCMC was not tested for PreCrash 

as it was not available at the time. [12] 

 

Sola [10] introduced a probabilistic and geometric 

technique known as BiCamSLAM, where a MonoSLAM 

algorithm was applied to a stereo camera system. Sola divided 

the SLAM and tracking algorithms. Feature detection and 

matching methods were combined to generate a map and 

camera pose. A different EKF was used for each detected 

dynamic object, and its path approximated.  

 

A robot with a stereo head and odometry was tested in the 

robotics laboratory at LAAS (Laboratory for Analysis and 

Architecture of Systems). Movable objects in the lab included 

a table, a bin, a small box, a trunk, a fence and, a white-board 

(which served as the target at the far end of laboratory). A 3D 

map was built from the sensor data. [10] Table 1 summarizes 

the techniques reviewed in section III.  

 

IV. DISCUSSION 

Similarities and differences of the techniques in section III 

are discussed in this section. 

 

Wang [16], Hähnel, Schulz and Burgard [5] did not account 

for robot motion uncertainties when objects were detected. If 

several observations were identified inaccurately, problems 

may occur when there are high odometry errors, decreasing 

the precision and the convergence of the algorithms [9]. Vu, 

Burlet, Aycard [13] and Vu [12], implemented a fast laser-

based incremental localization method to amend robot 

positions from odometry. 

 

Montesano, Minguez and Montano [8] incorporated 

identification in the estimation process, whereas [5, 12, 13, 16] 

separated the problem, such that identification was carried out 

before the estimation process. According to Montesano [8], 

the method allowed for better object classification and 

increased robustness of the algorithm.  

 

Unlike the methods in [5, 8, 12, 13, 16] that performed 

SLAM and DATMO with laser range finder(s), Sola [10] 

presented a technique that utilized cameras. Both laser range 

finders and cameras have their advantages and disadvantages.  

 

Laser range finders provide reliable and accurate distance 

measurements but cannot detect certain materials. Transparent 

materials such as glass cannot be detected because the laser 

beam passes through the material. Black objects may not be 

detected because the light from the laser is absorbed. Objects 

with surfaces that do not diffuse sufficient light, may reflect 

the laser beam out so that it is not returned to the laser range 

finder. [9, 16] 

 

Montesano [8] mentioned that some static objects were 

classified as dynamic due to misclassifications caused by the 

laser range finder. This occurred generally when the laser 

beam was parallel to the surface it was reflected off or when 

the beams overlooked an object because it was the same 

height as the laser scan. The system later determined the 

objects were static and classified them as such. [8] 

 

In the method introduced by Vu, Burlet, and Aycard [13] 

there were more tracks than the number of real objects 

detected. This was caused by objects which moved across or 

near the laser range boundary. In this region the laser 

decreased in precision and the efficiency with which objects 

were detected diminished. Also, if an object left the laser 

range and later returned, it was regarded as a new object by 

the tracker. The tracker was able to handle a high number of 

non-detections and false alarms. 

 

Wang [16] and Vu [12] proposed heterogeneous sensor 

fusion of laser and camera data to overcome the disadvantages 

of using laser range finders alone and improve performance.  

 

Cameras produce information of a higher quality for data 

association or object classification. They are generally smaller, 

less expensive and have lower power consumption. However, 

signal-to-noise ratio of gained images decreases under inferior 

lighting and poor weather, making the use of this sensor alone, 

inadequate in outdoor environments. [9, 12] 

 

The self-calibration solution proposed by Sola [10] for the 

BiCamSLAM system experienced reduced observability and 

inconsistency complications. Drifts in the yaw angle led to 

drifts in the map and vice-versa. Improvement was needed to 

enable constant, real-time calibration to allow more 

robustness. The method however, demonstrated that 3-D 

observability can be attained from uncomplicated analysis on 

the image plane for mapping. [10] 

 

Methods [5, 8, 13, 16] are model-free approaches i.e. they 

have the ability to detect any type of dynamic object with no a 

prior knowledge about the object. Vu [12] utilized a model-

based approach to eliminate the disadvantages of object 

segmentation when using laser scanners for tracking. Models  
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TABLE 1. TABLE OF RESEARCHED SLAM AND DATMO TECHNIQUES 

 
 

were used to detect and classify dynamic objects. According 

to Vu [12] this resulted in more accurate tracking results. A 

model-based approach, however, is limited only to the set of 

predefined models and cannot identify objects that are not 

included in the model set. [12] 

 

The methods presented by Wang [16], Vu [12], Vu, Burlet, 

and Aycard [13] may be utilized for outdoor applications 

while the methods described by Montesano [8], and Sola [10], 

may be used indoors. Hähnel, Schulz and Burgard’s method 

[5] was demonstrated in both indoor and outdoor 

environments.  

 

V. CONCLUSION 

In order to prevent the error of referencing dynamic objects 

in the localization process, static and dynamic objects need to 

be differentiated between. Identification of moving and 

stationary objects will improve localization and reduce 

spurious measurements in maps. The robust tracking of 

moving objects will guarantee reliable maps and improve map 

accuracy. 

 

 

 

This paper reviewed some of the techniques implemented to 

perform SLAM and DATMO. SLAM and DATMO were 

explained. Filtering and data association methods were 

defined. The well-known grid-based SLAM approach was 

described. SLAM and DATMO techniques were researched in 

terms of map representation, data association, tracking, and 

sensor and environment implementation. Differences in 

techniques were compared. 

 

VI. FUTURE WORK 

The literature review provides a foundation for future work 

concerning SLAM and DATMO. A.P intends to research the 

algorithms, filtering and data association techniques in more 

depth, and develop algorithms for the implementation of 

SLAM and DATMO using multiple Kinect sensors. 

(Microsoft Kinect sensors are inexpensive structured 3D light 

sensors that generate rich point cloud data.) The SLAM and 

DATMO algorithms will be tested, optimized and validated on 

a mobile robot in a dynamic environment. [19] 
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